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THE EXISTENCE OF GEODESICS JOINING
TWO GIVEN POINTS

WILLIAM B. GORDON

1. Introduction

Let M be a manifold (always assumed to be C=, finite dimensional and
without boundary), and let g = (g;;) be a riemannian metric on M. Since we
shall be varying metrics, the following terminology will be convenient.

Definition. An open domain (=connected open subset) D of M will be
said to be g-connected if every homotopy class of paths in D joining two
given points in D contains a (smooth) geodesic segment whose length is min-
imum for that class of paths lying entirely in D. (This geodesic need not furnish
a minimum arc length for the corresponding homotopy class of paths in M.
See § 5C for an example.)

We shall also have occasion to speak of the g-completeness of M, mean-
ing that M is complete in the riemannian sense with respect to g. A standard
result in riemannian geometry asserts that the g-completeness of a manifold
implies its g-connectivity.

The purpose of this paper is to present some criteria for the g-connectivity
of domains. The search for such criteria is largely motivated by the following
problem. Let V be a smooth “potential” on M, and consider the conservative
dynamical system

D*x

* ——4+FV=0.
*) x4

It is well-known that the trajectories to (¥) with total energy A are re-para-
metrized geodesics with respect to the Jacobi metric §,; = (h — V)g;;. (See
e.g. [6] for a rigorous account of this theorem.) Hence the g-connectivity
of a domain D implies that every pair of points in D can be joined by a tra-
jectory of (*) with total energy 4. But the components of V~!(— <o, A) are not
likely to be g-complete, and therefore the standard results of riemannian
geometry only guarantee the g-conmectivity of ““small” domains (such as
normal balls). We would like to be able to construct g-connected domains
which are reasonably large and physically meaningful.

Finally, we mention that since the geodesics (or trajectories) whose existence
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is asserted in the theorems below are obtained as paths at which certain
“energy” or “‘action” integrals are minimized, one might reasonably expect
that such trajectories are machine computable by the use of direct methods in
the calculus of variations. (Cf. [4], [7].)

2. Statement of results

2.1. Definitions. For ease of exposition all maps and functions will be
assumed to be of class C~. Recall that a map f between manifolds is said to
be proper iff {71(K) is compact whenever K is compact. Hence a (real-valued)
function f is proper iff f~![a, b] is compact for every closed interval [a, b]. If
D is an open domain with compact closure, then a function f on D is proper
iff |[f(p)|— o as p— dD. For domains whose closure is not compact, this
condition for propriety is necessary but not sufficient.

A function f defined on an open domain D is said to be convex (resp. strictly
convex) on D iff the second covariant differential (Hessian) F*f(p) is positive
semidefinite (resp. positive definite) at every point p of D. (We are of course
assuming the existence of a fixed given metric g. The definition of convexity in
terms of local coordinate representations is given in § 3—A.) Equivalently, f is
convex (resp. strictly convex) on D iff f/(x(2)) > O (resp. > 0) for every geo-
desic arc x = x(1) in D.

Note that an open domain D which supports a strictly convex function can-
not contain a nonconstant periodic geodsic. Also, if NV is a compact subset of
such a domain, then any nonconstant geodesic which enters N must eventually
leave N, (but may later return to N). The existence of a convex function on a
manifold has implications for the structure of the manifold ; see [2], and also
[1] and [3] for further applications and examples of this and related notions
of convexity.

2.2. Theorems and remarks. We are now in a position to state our theo-
rems. Again, it will always be assumed that M is a smooth riemannian mani-
fold endowed with a given metric g. it will not be assumed that M is g-
complete.

Theorem 1. An open domain D of M is g-connected if it supports a
proper positive convex function.

Theorem 2. An open domain D of M is g-connected if it supports a
positive convex function f such that

(i) f(p) — o as p— 3D,

(i1) for every real number ¢ and closed bounded set B in D, B N {70, c]
is compact.

Remarks. (1) None of the domains D described in the theorems need to
have compact closure. Also, the domains D need not be homeomorphic to
euclidean space. For example, an annular region in R? can support a proper
positive function which is convex with respect to certain metrics. (Example:
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The hyperboloid of revolution x* + »* = 1 + z?, is diffeomorphic to an open
annulus. If we give the hyperboloid the metric induced by its embedding in
R®, it turns out that f(p) = (squared distance from p to the axis of rotation) is
proper, positive and convex. Cf. § 5 for other examples.)

(2) If the domain D in Theorem 2 has compact closure, then condition (i)
implies that f is proper; i.e., Theorem 1 applies so that condition (ii) becomes
redundent. Condition (ii) also becomes redundant if M is g-complete, for in
this case closed and bounded sets are necessarily compact.

(3) Itis easy to show that every point p has a neighborhood D satisfying
the hypothesis of Theorem 1. (In a coordinate patch centered at p, take f(x) =
~log (¢* — |x[). Then for sufficiently small ¢, f is proper, positive and convex
on the domain |x| < ¢.)

2.3. Illwstration. The proof of Theorem 2 is a trivial modification of the
proof of Theorem 1, and a large part of the geometrical content of the hypo-
theses of Theorem 1 is provided by the following illustration.

A simple example of a domain which is g-connected but not g-complete is the
open unit disk in R?, where g is the standard euclidean metric. Suppose we
remove a pie shaped piece from the disk, as indicated in Fig. 1, and thus de-
stroy its g-connectivity. Let f be a proper function on this domain which
assumes the value + oo at the boundary. Consider the geodesic (straight line)
x = x(¢) running from A to E, as shown in Fig. 1.

()

LN -
e

c D

Fig. 1 Fig. 2

The graph of f(x(#)) is shown in Fig. 2. We see that f(x(#)) assumes the
value + oo at A4, decreases to a local minimum at B, increases again and as-
sumes a rather large value at a point C near the boundary, etc. Obviously, a
function with such a graph cannot be convex.
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3. Preliminaries to the proof

3.1. Geometric preliminaries. Our proofs will use the following con-
struction.

Lemma 1. Let M be a (not necessarily complete) riemannian manifold
with riemann metric g = (g;;), and f any proper function on M. Then M is
necessarily complete with respect to the metric & = (g;;) where

(1) &= 8&; + 1ds, (f; = of /ox?) .

A proof is given in [5], where the proposition is used to prove that a rie-
mannian manijfold is complete iff it supports a proper function whose gradient
is bounded in modulus. (Note that § = g + df & df is the metric which g in-
duces on the graph of f; i.e., the proposition states that the graph of a proper
function is complete with respect to the graph metric.)

We shall employ the usual conventions of tensor calculus. In particular we
use the summation convention, and the inverse matrix to (g;;) will be denoted
by (g¢%). The following identities can be verified by straightforward calcu-
lations:

(2) g =gl — (1 + |FIPDH,
(3) [ =T + A+ PID 7l

where f* = g¥f,, |\Ff} = gf,f; = f'f;, I'%, and I'%, are the Christoffel symbols
associated with g and & respectively, and

_9f
oxiox*®

f:‘k = - F?kfi .

Note that (f,,) are the coefficients of F*f, so that f is convex (resp. strictly con-
vex) iff the eigenvalues of the matrix (f;;) are all nonnegative (resp. positive).

3.2. Function-analytic preliminaries. The following facts about Sobolev
spaces are well-known; in particular we refer to [8], [9]. For any smooth
map x = x(z) from [0,1] to RY we define the norm |-, by |x|f =

fl {x(DF + [%() f}dz. Let H' denote the hilbert space obtained by completing
0

C~([0, 11, R¥) with respect to ||-|l,. The weak H-topology is stronger than
the uniform topology, i.e., weak H' convergence implies C° convergence. (In
fact, H' consists of absolutely continuous maps with L? derivatives.) Let the
manifold M be isometrically embedded in R (always possible by a theorem
of Nash), and for any pair of points p, g on M let 2, , denote the set of all
paths x = x(?) in H* which lie on M and for which x(0) = p, x(1) = g. Define
the “energy” functional E on 2, , by
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E(x) = ﬁu;ﬂd: - j : g, FW (D)1 .

Then using some well-known generalities about hilbert spaces one obtains the
following proposition.

Lemma 2. Let {x,} be a sequence of paths in 2, , such that E(x,) < con-
stant, and suppose also that all the x, lie in some compact subset K of M.
Then there exist a path x = x(1) belonging to £, , and lying in K, and a sub-
sequence {x,} of {x,} such that

. weak, H! Co
(i) x}, ————> x (and hence x, —> x),

(i) E@) < lim{E(x,)} (=lim sup {E(x,)]).

Remark. A sequence {x,} in £, , on which E is bounded always contains
a subsequence which converges to a path in R”. The requirement that the {x,}
lie in some compact X is necessary because of the possible lack of complete-
ness of M ; i.e., if M is not a closed submanifold of R¥, then one cannot con-
clude that a subsequence in £2,, which is bounded in H*-norm contains a
subsequence which converges to a path on M.

4. Proof of Theorem 1

(i) Let 2, ,(D) denote the space of all curves x = x(7) which belong to
2, and lie in D. We shall construct a curve x_, ¢ 2, ,(D) at which E|2, ,(D)
attains a minimum value. It is well-known that such a curve is a geodesic, and
that its arc length is also minimum for all curves belonging to @, (D).

Let f be a proper positive convex function on D, and for each positive integer
n let g™ = (gfP) where

&P =& + lfzf] .
1
Let E™ be the “energy” corresponding to g ; i.e.,
) 1 ios . 1 ios 1
E®(x) = f {gi,-fc‘fcf + 1 fif,.xzxf}dz —E@ + L j N
0 R nJo

Now according to Lemma 1 the domain D (considered as a manifold) is g»-
complete, and therefore g'-connected. Therefore for every n there exists
a curve x™ = x™(f) in £, (D) which minimizes E‘~. (In fact, there exists
such a curve for each homotopy class of paths joining p to g in D. In the
sequel we shall choose each of the x™ to belong to the same fixed homotopy
class.)

(i) Without loss of generality we can assume f(p) < f(g). Let K =
70, f(@)]. Then the propriety of f implies that K is compact.
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(ili) Let (f{») represent the coefficients of the Hessian of f with respect to
the metric g™. Replacing f by f/4/# in formulas (1), (2) and (3), one easily
obtains the relation '

n
W= f; .

R 2T

Hence f is convex with respect to each of the metrics g‘». But each of the
curves x™ is a geodesic with respect to g, so that the real valued function
t— f(x™(%)) is convex. Therefore, for each n,0 < f(x™()) < f(g), O << D).
That is, each x™ lies in the compact set X.

(iv) From the definitions and the minimizing properties of the curves x‘»

we get
(4) E(x) < E™P(x) < E™(x) for all x in 2, ,(D) ,
(5) E®=D(xntl) L EPR(x®) < E™(™) .
Therefore {E™(x™")} is a decreasing sequence, and

E(x'™) < E™(x™) < constant .

(v) Having established that the x®’s all lie in some compact set K and
that E(x‘') is bounded, we can now apply Lemma 2. Therefore by passing
to a subsequence we can assume that the x*’ converge to some x,, € 2, ,(D)
in the weak H'-topology. We are also given that

(6) E(x.) < Tm {E(x™)} .
We have to show that
(7) E(x,) < E(x) forall x e 2, (D), (x ~ x.) .

Remark. The fact that K is a compact subset of the open set D implies
that K does not intersect 6D. This is important since otherwise x., might be a
broken geodesic with corners abutting on dD.

(vi) To establish (7) we use (4), (5) and (6) to obtain

E(x.) < lim {E(x™)} < lim {E®(x,)} < Im {E®(x)} = E(x) .
This completes the proof of Theorem 1. The proof of Theorem 2 differs
from that of Theorem 1 only in some minor details.
5. Examples

We conclude by giving a few low dimensional examples of domains D, which
satisfy the conditions of Theorems 1 and 2.
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1. Again we consider the hyperboloid M whose isometric embedding in
R®is given by x* + y* = 1 4 7% As we have already mentioned, the function
f = x* 4+ y* is proper, positive, and convex ; hence M provides an example of
a domain homeomorphic to an open annulus which supports a function satisfy-
ing the conditions of Theorem 1.

Let 7, > 1, and let D be the domain (of M) given by 22 <r; — 1. Let F be
a function on D given by F(p) = b — log (+} — f(p)), where the constant b is
chosen to make F positive. An easy calculation shows that F;; = (r} — /)~f,;
+ (rr — N7*.f;. Hence F is proper, positive, and convex on D.

Note that f is strictly convex on the domains z > 0 and z < 0, so that
neither of these domains contain periodic trajectories. On the other hand, M
contains a periodic geodesic around its waist z = 0. More generally, if a do-
main which supports a convex function f contains a periodic geodesic, then
this geodesic must lic on a hypersurface f = constant. (Cf. [2], [3].)

2. Let M be the standard unit circle §*,pe S* and D = S' — {p}. Then
it is easily shown that D supports a proper positive convex function.

If we cross this example with R*, we obtain an example of a domain D satis-
fying the conditions of Theorem 2; i.e., M is the cylinder §* X R*, and D is
the cylinder with a generating line removed.

3. Finally, we give an example which gives content to the parenthetical
remark following the definition of g-connectedness in § 1. We construct a
domain D in a (compact, simply connected) manifold M with the following
properties.

(i) There exist two (distinct) points p,q in D and a (unique) geodesic 7
joining p to ¢ in D, whose arc length is minimum for all paths in D joining p
to g and homotopic to 7.

(if) There exists a geodesic y joining p to g in M, which is homotopic in
M to y and whose arc length is strictly less than that of 7.

To this end, let S* be the standard 2-sphere whose isometric embedding
in R® is given by x* + y? + z2 = 1. Let ¢ be a small positive number, and let
P, q be the two points on S?, which lie on the two planes x = 0 and z = —e.
Let D be the domain z < —¢/2, and y be the short great circle arc in D, which
joins p to q. One can easily construct a proper positive convex function on D
(which depends on z alone), so that D is g-connected. Now let M be the
topological sphere which is obtained by removing the closed domain z > —¢/3
and replacing it with a cap C which is smoothly attached to the remaining part
of 8% If the cap C is sufficiently flat, then one easily obtains a minimizing
geodesic 7 which joins p to g, whose arc length is less than that of y and which
is necessarily homotopic to  (in M) since M is simply connected.
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